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A Systematic and Topologically Stable Conformal
Finite-Difference Time-Domain Algorithm for
Modeling Curved Dielectric Interfaces
In Three Dimensions

Theodoros |. Kosmanis, Sudent Member, |EEE, and Theodoros D. Tsiboukis, Senior Member, |EEE

Abstract—A systematic conformal finite-difference time-do-
main (FDTD) algorithm for the direct modeling of dielectric
interfaces in three dimensions is presented in this paper. The
straightforward procedure is based on the proper reformation of
the grid cellsin the vicinity of the dielectric surface, leading thus
to the creation of five-faced prisms on the primary grid, apart
from the standard hexagonal ones. The new scheme overcomes
any topological deficiency that forbids the contour path FDTD
and conformal FDTD technique to directly simulate dielectric
boundaries, since it maintains the lattice duality. Therefore, no
instabilities, even late-time ones, are observed. On the other hand,
the accuracy obtained, even with very coarse meshes, is very
good asis proved by the numerical analysis of various resonance
problems.

Index Terms—Conformal finite-difference time-domain

(CFDTD), dielectric interfaces, resonators.

I. INTRODUCTION

INCE the advent of the finite-difference time-domain
S(FDTD) method, many efforts have been made in order
to produce an efficient and straightforward algorithm for the
geometric modeling of arbitrarily shaped surfaces [1]. The
quite popular staircase meshing, though it fulfills the simplicity
condition, is known to introduce significant errors, especially
in resonance problems, even if very dense meshes are incor-
porated [2], [3]. On the other hand, the appreciable number of
FDTD variations, promising to obtain sufficient simulation of
non-Cartesian structures, is fairly complex or characterized by
limited applicability.

Specifically, for purely cylindrical or spherical problems, the
FDTD method in global curvilinear coordinates (cylindrical or
spherical) [1] or special two-dimensional (2-D) reductions due
to rotational symmetry (body of revolution) [4], [5] are success-
fully utilized. However, both cases are limited by the fact that
the curvilinear grid must conform to al the boundaries and in-
terfaces of aproblem, otherwise another mesh must be selected.

These restrictions are overcome by the generally nonorthog-
onal FDTD methods [6]-{9], which are no longer based on
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orthogonal grids but on arbitrarily structured ones that geo-
metrically model the problem’s boundaries. Their significant
efficiency is outbalanced by the great deal of computational
resources and programming complexity required, since, in ad-
dition to the original FDTD algorithm, lattice information must
also be stored.

The research for a more simple (than the nonorthogonal
FDTD), with wider applications (than the globa curvilinear
FDTD) and more accurate (than staircase meshing) algo-
rithm led to the contour path finite-difference time-domain
(CPFDTD) technique[10], [11], the conformal finite-difference
time-domain (CFDTD) technique [12], and their numerous
variations [13]{17]. They are all based on a reformulation of
the original FDTD method in terms of surface and contour
integrals.

The objective of this paper is to present a new consideration
of the contour path and conformal FDTD approaches by means
of the grid structure. A systematic procedure, which maintains
the reciprocity and causality of Maxwell’ s equations (absent in
theorigina CPFDTD algorithm) and isdirectly applicableto di-
electric boundaries in three dimensions, is built. The grid cells
are distorted from their Cartesian form only near the dielectric
interface according to the FDTD conformal techniques, while
right afterwards appropriate edge movements are performed. In
thelattice created, new typesof cells, apart from the classical or-
thogonal and conformal ones, appear (five-faced primary prisms
and seven- and nine-faced dual prisms). Therefore, a topologi-
cally correct scheme is generated where the two grids, accom-
modating the electric and magnetic field components, maintain
their duality. Thefield variables are updated by means of thein-
tegral form of Maxwell’ s equations, which are now feasibly im-
plemented. The proposed procedure is thoroughly analyzed in
Section 11, after abrief description of the CPFDTD and CFDTD
approaches in Section I1. Finally, the efficiency of the innova-
tive algorithm is demonstrated through the solution of various
demanding resonance problems.

Il. MODELING OF CURVED SURFACES WITH THE
FDTD METHOD

A. CPFDTD Technique

The method is a generalization of the origina FDTD algo-
rithm. It is based on the local deformation of the lattice cells
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in the vicinity of the curved surface in order to geometrically
conform to it, whereas in the rest of the computational domain
the grid preservesitsinitial orthogonality [10], [11]. Therefore,
the necessary boundary or interface conditions on the sur-
face—for example, the continuity of thetangential electric field
along a dielectric interface—can be easily implemented. Due
to this locally nonorthogonal grid structure, the update equa-
tions are not derived from the differential form of Maxwell’s
equations (standard FDTD) but from the integral one, which
are discretized so as to maintain the leapfrog character in
space and time.

Consequently, considering a 2-D grid with £, E,, and H.
components as variables, the Faraday contours, used for the up-
date of the H, components, are deformed near the conducting
or dielectric surface, enforcing an edge to align with it. On the
other hand, the magnetic field components remain at the center
of theinitial cells and, hence, Ampere’s contours, used for the
update of the electric field, remain orthogonal. It must be noted
that calculations of Ampere’'s contours crossing the interface
are either not performed (conducting objects) or performed by
means of interpolation procedures or the nearest neighbor ap-
proximation (conducting/dielectric objects) [10].

In any case, these are sources of inaccuracy and inherent in-
stahility (independent of the time step selection), since they are
responsible for the noncausality and the nonreciprocity of the
algorithm [16], [18]. Thus, athough simple and efficient, the
CPFDTD method frequently leads to instabilities.

Efforts have been made toward a stable procedure; however,
these improvements are valid only for the simulation of con-
ducting materials and not for dielectric objects[13], [15], [19].

B. CFDTD Technique

This method, a representative version of which has been pre-
sented for the modeling of perfectly conducting objects [12],
variesfrom the CPFDTD algorithm in the treatment of the mag-
netic field. In an effort to overcome the instability problemsthat
reside in the CPFDTD, magnetic field components, located at
the center of distorted cells but inside the perfectly conducting
material are also computed. This is obtained by taking into ac-
count the nonzero components of the electric field in the cell
surrounding the corresponding magnetic field component and
the edge lengths outside the conductor. Therefore, each electric
field component can be calculated by means of Ampere’s law
and not by any other auxiliary way. However, the method has
some stability limitations, which are outbalanced by using the
CPFDTD complementarily tothe CFDTD [12]. Nevertheless, it
is considered to be more efficient as compared to the CPFDTD
when modeling conducting materials [16].

C. Modeling Dielectric Objectsin Three Dimensions: The
“ Sair-Sep” Problem

The two aforementioned techniques are proved to be ineffi-
cient for the direct simulation of dielectric interfaces in three
dimensions [16], mainly because the tangential to the boundary
electric field component of the distorted cellsis no longer zero.
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Fig. 1. The“stair-step” appears because P is the node of cell C';, but not of
the neighboring one, Cs.

Consequently, the so-called “stair-step” problem appears and
renders the locally nonorthogonal structure topologically un-
stable.

To probe further, let us assume a dielectric interface that is
arbitrary in shape, according to afunction y = f(z) withz and
1 corresponding to the two dimensions of the structure’'s cross
section, while no ateration occurs in the third one (z). Fig. 1
illustrates its discretization by an orthogonal finite difference
grid, which would actually be the lattice used by the CPFDTD
and the CFDTD.

Inspecting awider part of the computational space (not only
therestricted areaof two cells), onecan easily observethe stair-
step” problem, which arises in the primary grid when the pair
of distorted cells moves a row up or down according to the
curve's slope. As shown in Fig. 1 (z cross section), the “stair-
step” is created by acell (C1) node (P) that does not coincide
with a corresponding node of a neighboring cell (Cs), but is
located along their common edge (¢). This topological irregu-
larity causes difficulty in implementing Ampere's law for the
time update of the electric field component along the common
edge and is responsible for the use of the “nearest neighbor”
approximation (CPFDTD).

The topological deficiencies become more problematic, not
only for the CPFDTD, but for the CFDTD as well, when the
dua grid is inserted. The local nonorthogonal structure of the
primary grid and the existence of the “stair steps’ result in an
unorthodox complex dual grid, which is defined to have its cell
verticeslocated at the barycentersof the primary cells. Thebasic
topological rule that “each dual (primary) grid edge must inter-
sect only one primary (dual) grid face” isviolated and therefore
algorithmic instability is caused.

Obvioudly, the two locally conformal FDTD based tech-
niques cannot be extended to the three-dimensiona (3-D)
modeling of dielectric interfaces unless important alterations
in the lattice’s structure are performed. It must be mentioned
herein that efforts for generaization of the CFDTD method
have been recently published [20]-{22]. However, they are
based on the introduction of effective permittivities for the
edges and cells that intersect the interface (maintaining the
Cartesian grid structure in the overall computational domain)
and therefore deviate from the original conformal idea.
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I1l. ANALYSIS OF THE SYSTEMATIC PROCEDURE

A. Construction of the Locally Conformal Mesh

According to the previous section, the creation of atopologi-
cally stable 3-D conformal FDTD agorithm requires the appro-
priate elimination of the “stair steps.” The proposed technique,
based on the main idea of the CPFDTD and CFDTD techniques
and introducing appropriate grid modifications, overcomes any
duality deficiency and constitutes a stable and robust algorithm.
A systematic and straightforward way of forming the cells near
the dielectric interface can be summarized into the following
four-step procedure (pre-processing part of the algorithm).

1) The computational domain is discretized by means of an
orthogonal standard FDTD grid.

2) Theprimary grid cells closeto the interface are deformed
in order to conform to it and better describe it. The
“stair steps,” created by cell edges not coinciding with
a corresponding edge of a neighboring cell, are detected
[Fig. 2(8)].

a) It is noted that, for curves with less than a 45°
slope, the “stair steps’ are detected horizontally
[i.e,, moving aong the interface, the cell pair
that is responsible for the “stair-step” creation, is
detected—the vertical arrow in Fig. 2(a)] and for
curves with greater than a 45° dope, the “stair
steps’ are detected vertically.

b) In case of curves with a generaly varying slope
between 0° and 90°, like quarters of circles or
ellipses, acombination of the aboveisused. Simul-
taneoudly, the cells containing points with a 45°
slope are aso detected (transition cell-transition
point). Particul arly, assuming the upper left quarter
of acircle, the search is performed vertically until
the transition point of 45° from which further
horizontal search is performed as mentioned in
Fig. 2(a).

3) Inthisstep, theimproved grid isdevel oped by eliminating
the “stair steps,” and the cellsintersected by the interface
around the transition point are also reformed.

a) Asfar asthe“stair steps’ concern, the two primary
faces that are responsible for their formation are
moved toward different directions (opposite to the
curve) and the corresponding cells are turned from
hexahedrals into five-faced prisms (quadrilaterals
into trianglesin cross-section view). Therefore, the
“stair-step” problem is overcome. This case isil-
lustrated in Fig. 2(b).

b) For the treatment of the cells around the transition
point (45° dlope), two cases are distinguished, one
in which the transition cell is mostly filled with
the material of the cylinder [Fig. 2(c)] and one in
which the transition cell is mostly filled with air
[Fig. 2(d)], according to the portion of the cell—in
which this point is located—that is filled by each
dielectric. Thediagonal of thecell that intersectsal-
most normally the curve (its two points are located
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Fig. 2. (@) Cell deformation according to the original CPFDTD and CFDTD
methods. The “stair step” (circles) and transition cell detection proceeds as
the arrows show. (b) Edge movement and elimination of the “stair steps.”
(c) Treatment of thetransition cells (case 1). (d) Treatment of thetransition cells
(case 2). () Complete modeling according to the systematic procedure (solid
lines: primary grid; dashed lines: dual grid; circles: shifted H. components).

in either side of the curve) is detected. The node of
the diagonal, whichis closer to the curve, is moved
on the diagonal—curve intersection point [1) and 3)
of Fig. 2(c) and 1) of Fig. 2(d)]. Furthermore, the
edges of the cell that are not connected to the node
are completely removed and replaced by the short-
ened af orementioned diagonal [2) of Fig. 2(c) and
(d)]. The two cases are illustrated in Fig. 2(c) and
(d).

The completion of the third step has a consequence: the

appearance of five-faced cells at the primary grid, apart

from the nonorthogonal hexahedral ones.

4) The dual grid defined by the barycenters of the primary
cells volumes is inserted.
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The above four-step procedure can be feasibly implemented
for the exact geometric representation of any dielectricinterface,
needing as a requirement only the knowledge of its variation
in space.

B. Update Equations

The update of field components in the grid is performed by
means of the integral form of Maxwell’s eguations, i.e., the
circulation of the electric (magnetic) field along the circumfer-
ence of a primary (dual) grid face is used for the update of the
magnetic (electric) field normal to that face. As an example, the
algebraic difference equations for the H. component located
at the barycenter of triangle 7" and of the E;,, component
along the interface [Fig. 2(e)], will be derived from Faraday’s
and Ampere's law, respectively. Therefore, we start from the
two integral forms

dB
—// Eds_j{Edl )
St ISt
// S ds= 74 H-dl @
Sn dSp

where E and H are the electric and magnetic field intensities
and D and B the electric and magnetic flux densities. Assuming
that the flux density normal to a surface and the field intensity
along the edge intersecting the surface are related by means of
coefficients P¥;, k = e, h,as D = ¢EPf; (B = uHP}")),
then the algebraic equations derived are the following:

8tHZ[Zj7k
O (Bl e Bl oy n Lty o k8Y)
NOSTE}’Lj zli, j, k T, j+1, k=T yli41, 5,k
©)
and
OrEan [Z—;’O;;S

n+0.5 n+0.5
HZ[i,j-{—O.S,k bz — HZ[i,j—O.S,k bz— )

ot
ELD(SZPZJ < Hy[zt,oki-o.s Lp+ Hy[z-;,olio.s Lp
4)

In (3) and (4), 6t isthetime step, 6z isthe edge length along
the z-direction, € and 1+ are the perimittivity and permeability
appointed to the updated component, St isthetrianglearea, L,
isthelength of dual edge D, and Ly = (§x% +64%)°°. Thetwo
important issues of the projection coefficients and the selection
of the permittivity of the electric field components along the
interface will be defined bel ow.

It must be noted that, if (3) and (4) refer to a standard orthog-
onal cell, they coincide with the corresponding ones derived by
the differential form of Maxwell’ s equations.

C. Projection Coefficients

The general absence of orthogonality between the primary
grid faces/edges and the dual grid edges/faces, due to the local
unstructured nature of distorted cells, imposes the use of a

Dual Cell

Fig. 3. Field fluxes and intensities are related to each other through a simple
geometrical projection.
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Fig. 4. Computation of the effective perimittivities along the dielectric
interface.

projection scheme for the connection of the fluxes computed
by Maxwell’s eguations to the intensities required for this
computation [23]. The former are normal to the faces whereas
the latter are aligned with the edges. Supposing that an edge
intersects its dual face by an angle =" (Fig. 3), then the
following expressions relate a flux (connected to the face)
to the corresponding intensity (located along the edge) and
define the projection coefficients:

eectric field:
magnetic field:

D =¢Ecosf° Pf; = cost”

B = ;10H cos 6" Pfj = cos 6"

It hasto be mentioned that there exist other, more popular pro-
jection schemes [6], [24], performing an interpolation of more
than one neighboring field intensity components when com-
puting the normal to a face flux density. However, it has been
proved that, in general, they lead to late-time instabilities [7],
[8]. Although someimprovements have been proposed, for sim-
plicity reasons we preferred—and since no inaccuracies are in-
troduced—the above projection scheme.

D. Effective Permittivities at the Dielectric Interface

When dielectric interfaces are simulated, the permittivity
values appointed to the electric field components located along
theinterface play avery significant role. Considering the inter-
face of Fig. 4, it is only the dielectric constants related to £,
and E. aong the interface that must be appropriately defined.
In the proposed method, a scheme based on the discretization
of theintegral form of Maxwell’ s equations over finite volumes
containing the interface, and taking into account the continuity
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conditions across it, is implemented. Therefore, the following
effective permittivities are derived:

eff Suazézel + SdazézEQ Sua:f':l + Sda:EQ

£ = =

e 5267 4+ Sypb2 Suz + Sdx
off _ Suz0281 + Sq.02€9 _ Suz€l + Saz€2
TE T 8,072+ 8.6 Suz + Sz

where S,, and S; are the areas of the cell belonging to the ma-
terial with permittivities £; and e, respectively. These values,
which are the outcome of linear weighting in the volume of a
cell, are proved to maintain the second order accuracy of the
FDTD equations [25].

E. Sability Analysis

As has aready been mentioned, the numerical stability of the
proposed scheme must be examined from two points of view:
the topological one and the time discretization one.

To probe further, we assume that the update equations can be
written in amatrix form by means of the following coupled set
of first-order difference equations:

bn—|—0.5 — bN—0~5 _ 6tC€D€Addn (5)
dmH =d” 4 6tC), A, b0 ©6)

whered, b are vectors of the discrete flux density components,
the superscripts refer to discrete time, C. and Cj, represent
the discrete contour integrals of the electric and magnetic
fields around primary and secondary cell faces, respectively,
D. is a diagonal matrix having as elements the inverse of
the relative permittivity, and 4, and A, are the projection
matrices. Accordingto theanalysisof [ 7], the system eigenvalue
equation and the system matrix can be derived, leading to the
following two conditions that need to be satisfied in order to
assure stability:

1) The system matrix must be positive definite with real and

distinct eigenval ues (topol ogy).

2) The time step (time discretization) must be less than

2/(sup{v/CrA,C. DAy }).

In the proposed scheme, matrices 4, and A, are diagonal
(each flux component is connected only to one intensity com-
ponent as mentioned in Section 111-C) and, therefore, symmetric
and positive definite. Moreover, matrix D. isa so diagonal even
for inhomogeneous domains. Therefore, and since the product
C,,C, isaways positive definite, the former condition is satis-
fied and the algorithm does not suffer from late-time instabili-
ties, which are the outcome of a nonsymmetric or nonpositive
definite system matrix. On the other hand, the second condition
isequivalent to the onederived in[26] asafunction of the metric
coefficients of a general curvilinear space. However, the max-
imum value of thetime step that does not lead to instability may
also be defined by the empirical, though fairly practical, relation
(similar to the one of the PGY algorithm [24])
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Fig. 5. Four distinct regions of the primary grid as they are formed for the
simulation of an arbitrary curve. The dual grid is correspondingly created.
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Fig. 6. Partialy filled resonator.

where ¢4 is the speed of light in the material with minimum
permittivity and [;; and [, are the length of edges sharing a
common vertice.

Therefore, the avoidance of any approximation schemes
(such as “ nearest-neighbor”), together with the implementation
in the procedure of simple projection coefficients and effec-
tive relative permittivities, assures algorithmic accuracy and
stahility.

F. Discussion

Apparently, the proposed technique preserves, in a major
level, the characteristics of the original FDTD method, since
the deformed cells exist only in a three-cell width area across
the simulated surface (interface). Therefore, the additional
memory requirements of the algorithm, since they are related
only to the edge lengths and areas of the distorted cells as well
as to the projection coefficients for each edge-face pair, are
insignificant. Furthermore, the overall computational time is
dlightly larger than the one required by the standard FDTD
method, with staircase meshing or specia effective coefficient
schemes, with the same grid size. These extra demands corre-
spond to the preprocessing part of the procedure, where all the
geometric information is calculated and stored. On the other
hand, the iteration part requires no more computational time
than that of the standard FDTD algorithm. Nevertheless, the
accuracy obtained by the innovative technigue is much higher,
as will be revealed by the numerical results.

Moreover, the mesh generation performed in the prepro-
cessing part may be realized in a feasible and systematic way.
This can be attained via several procedures. We indicate below
the idea on which we were based, a characterization of various
types of cell areas around the curved interface that require
special treatment. Specifically, four types of cell areas in the
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TABLE |
RESONANT FREQUENCIES ( X108) FOR &, = 38 (A = PROPOSED METHOD, B = STAIRCASE FDTD METHOD, C' = METHOD [22])
No of cross- g=1 qg=2 g=3
section cells A B C A B C A B C
30 5.0754 4.7751 4.7425 5.2035 5.0195 4.9380 6.2015 5.8835 5.851
110 5.0395 5.043 5.075 5.3010 5.1380 5.0908 6.2250 6.0868 6.1026
440 5.059 5.059 5.091 5.3196 5.1225 5.1230 6.1884 6.1342 6.1342
990 5.075 5.075 5.085 53121 5.3121 5.3121 6.1660 6.1184 6.1469
1760 5.06 5.0592 5.06 5.2973 5.3121 5.3121 6.1435 6.134 6.134
TABLE I

RESONANT FREQUENCIES ( X 10%) FOR () = 2 (A = PROPOSED METHOD, B = STAIRCASE FDTD METHOD, C' = METHOD [22])

No of cross- g, =2.495 g, =20 g, =38
section cells A B C A B C A B C
30 17.263 16363  16.036 | 69147 6.7145  6.4211 5.0521 49055  4.6936
110 17.281 16.474 16490 | 6.9344  6.8457  6.7824 | 5.0755 5.0118 49643
440 16.926 16.442 16.493 6.8819 6.7983 6.7983 5.0220 4.9643 4.9643
990 16.785 16.468 16.506 6.8819 6.7919 6.8299 4.9996 4.9801 5.0086
1760 16.703 16474  16.506 | 6.8448  6.8299  6.7983 | 4.9996  4.9959  4.9643

primary grid can be distinguished according to the slope angle
of the dielectric interface:

* region “A”: column containing one (1) five-faced pris-
matic cell (prism of triangular cross-section) above the
dielectric interface;

 region “B”: column containing one (1) five-faced pris-
matic cell below the dielectric interface;

* region “AB”: column containing two (2) five-faced
prismatic cells, one above and one below the dielectric
interface;

* region “O": column containing no five-faced prismatic
cells.

It must be mentioned that asingle “stair step” isreplaced via
the above procedure by a pair of regions “A” and “B.” How-
ever, when the curve is very steep, £ > 1 subsequent “stair
steps’ appear in the grid, which are substituted by one region
“A k—1regions“AB,” and oneregion “B.” Regions“O” de-
scribetheclassical, distorted, hexahedral cellsin the absence of
“stair steps.” Fig. 5 depictsin the cross-sectional view the dis-
cretization of the interface between two dielectrics by the pro-
posed method. Thisdistinction, while requiring minor computer
resources, greatly simplifies the algorithm.

Finally, in the case of interfaces with a generaly varying
dlope, the transition cells are easily detected and reformed ac-
cording to the procedure given in Section I11-A.

IV. NUMERICAL RESULTS

The proposed methodology is validated through the analysis
of various resonant structures, constituting challenging numer-
ical problems since late-time instabilities are often reported due
to the absence of dissipation for spuriously generated energy.

Additionally, the greater sensitivity of the results to any lattice
inaccuracies, as compared to scattering problems, renders the
selected ones even more appropriate for the validation of our
scheme. The resonant frequencies are computed for each case
and compared either with analytical/experimental valuesor with
results obtained by the utilization of other methods.

It is aso mentioned that all frequency-domain results are ex-
tracted from the implementation of the Fourier transform on the
time samples filtered by a Blackman—Harris window.

A. Partially Filled Orthogonal Cavities

The resonant cavity (Fig. 6) has the dimensions
0.2 x 0.1 x 0.111 m? is excited by a Gaussian in space
and time distribution and is characterized by a dielectric
interface that varies according to the function [27]

Di(z) = g (0.01 +0.99 exp (—q2 (x/a— 0.5)2>)

where ¢ and b are the width and the height of the structure and
g acurvature parameter.

The results derived by the innovative lattice structure are
compared with those of the staircase FDTD technique and of a
variation of the CFDTD technique [22].

Specifically, the efficiency of the proposed algorithm istested
for aseries of different interface curvatures obtained by varying
parameter ¢, while the filling material remains the same (e, =
38). The results are shown in Table | where the fourth resonant
frequency of the cavity for three values of ¢ (¢ = 1, 2, 3) is
computed. The promising performance of the new scheme is
obvious, since even for very coarse meshes it is significantly
accurate. Furthermore, no instabilities are observed as the grid
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TABLE 111
COMPARISON OF THE COMPUTATIONAL RESOURCES CALCULATION OF THE FOURTH RESONANT FREQUENCY FOR (Q = 3 AND ¢,. = 38
No of cross- Proposed Method Staircase/[22] Methods
section cells CpPU Memory Frequency CPU Memory Frequency

time (MB) (x10% time (MB) (x10%)

30 14” 0.066 6.2015 8” 0.046 5.851

110 27107 0.174 6.2156 1’ 527 0.150 6.1026

440 21’ 58” 1.30 6.1884 17> 227 1.07 6.1342

990 1h 25’ 434 6.166 1h 21’ 3.37 6.1184

1760 6h 57° 10.24 6.1435 6h 53’ 7.67 6.134
TABLE IV

HIGHER ORDER RESONANT FREQUENCIES (IN GIGAHERTZ) OF THE
"""""" PARALLEL-PLATE DIELECTRIC RESONATOR

Fig. 7. Parale-platedielectric resonator with R = 5.25 mm, H = 4.62 mm,
and relative dielectric constant £, = 38.

becomes denser despite thelarge number of time stepsthat were
used so as to examine the limits of the algorithm.

The proposed technique was also tested for various values
of the filling material permittivity, since a higher dielectric
discontinuity is more difficult to be accurately modeled. Nev-
ertheless, as shown in Table Il, the new scheme preserves
its accuracy thanks to the precise geometric representation of
the interface and the use of the effective permittivity scheme
along the interface.

Conseguently, the overall computational resourcesneeded for
a specific level of accuracy is significantly reduced as proved
by the comparative study of Table 11, where the CPU time and
memory requirements of the three methods and the fourth reso-
nant frequency computed by them for various grids, are listed.
Thisimportant advantage of the proposed methodol ogy is based
on its ability to obtain significant precision while simultane-
ously maintaining in amajor level the ssmple and easy-to-pro-
gram structure of the standard FDTD a gorithm.

It is worth mentioning that the resonant frequencies com-
puted by the proposed technique approaches the exact value
from above. This property, observed in most of the cases
treated, is appointed to the utilization of the projection coeffi-
cients, which affect the dispersion relation.

B. Parallel-Plate Cylindrical Dielectric Resonator

The resonant frequencies of the parallel-plate dielectric res-
onator of Fig. 7 are computed by means of the proposed algo-
rithm. For this simulation, éz and 6y were set equal to 0.25 R,

Modes Analytical | Proposed Conf. FDTD Axially sym. FDTD [4]
values Frequency Rel. error(%)| Frequency Rel. error(%)
HEM,,, | 7.4995 7.4961 +0.0453 | 7.4979 0.0213
HEM, 5, 8.3177 8.3275 -0.1178 8.3172 0.0060
HEM;y, 9.0250 9.0320 -0.0775 8.9922 0.3634
HEM,,, | 9.7139 9.7400 20.2679 9.6995 0.1482
HEM,;, | 11.8310 11.8025 +0.2408 11.8217 0.0786
HEM;;; | 12.8107 12.8000 +0.0835 12.7618 0.3817
HEM;;, | 13.3215 13.3740 - 0.3940 13.2316 0.6478

Electric Field Magnitude

. : . .
2 4 6 8 10 12 14
Number of time steps x 10"

Fig. 8. Electric field intensity variations versus time.

the number of time stepswas 32 768, whereas the computational
domain along the x- and y-directions was truncated by a six-
layer perfectly matched layer (PML). In contrast to the previous
problem, the curvature range of the interface is greater and re-
quires, for proper modeling, the utilization of transition cells as
well. Nevertheless, and despite the coarse mesh used, the accu-
racy obtained isvery good (the relative error is quite small even
for the higher order modes) asreveal ed by the comparison of the
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TABLE V
HIGHER ORDER RESONANT FREQUENCIES (IN GIGAHERTZ) OF
THE CYLINDRICAL DIELECTRIC RESONATOR

Modes Ex\]ﬁ);rjgegt]a : Proposed A;]l;,ll% s[);r]n
TE yo 4.85 4.855 4.848
HEm, - 6.315 6.310
HE;y, 6.64 6.667 6.638
TMgo: 7.60 7.586 7.513
HE g, 7.81 7.860 7.721
TEgo1 - 8.330 8.297
HE;;, - 8.490 8.455
TEno - 9.120 9.100
HE - 9.338 9.350
HEmn3 - 9.925 9.920

results with analytical values and those of a dense 2-D FDTD
(body of revolution) method [4], presented in Table IV. More-
over, the stability of the algorithm is demonstrated in Fig. 8,
where time samples of the electric field inside the resonator are
shown (in this case the number of time steps was 131 072).

C. Cylindrical Dielectric Resonator

The cylindrical dielectric resonator (without paralel plates)
constitutes an open problem requiring additional mesh trunca-
tion (PML) along the z-direction. This did not cause a stability
problem since, similarly to the proposed agorithm, the PML
is also planar. The dimensions and the permittivity as well as
the characteristics of the grid used are equal to those of the
previous problem. Again, a very close agreement between the
resonant frequencies computed, the experimental values, and
the ones of a dense 2-D FDTD (body of revolution) method
[5] (see Table V) is observed and proves the validity of the
agorithm.

V. CONCLUSION

A systematic and feasible procedure for the direct conformal
simulation of nonorthogonal dielectric structures in three di-
mensions was introduced. It is based on a successful combina-
tion of prism and hexahedral cells which restore the duality of
the two grids that is violated by the traditional CPFDTD and
CFDTD technigues when implemented in dielectric interfaces.
Therefore, a topologically stable numerical tool was produced
that proved to befairly efficient in the analysis of partialy filled
and dielectric resonators.
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