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Abstract—A systematic conformal finite-difference time-do-
main (FDTD) algorithm for the direct modeling of dielectric
interfaces in three dimensions is presented in this paper. The
straightforward procedure is based on the proper reformation of
the grid cells in the vicinity of the dielectric surface, leading thus
to the creation of five-faced prisms on the primary grid, apart
from the standard hexagonal ones. The new scheme overcomes
any topological deficiency that forbids the contour path FDTD
and conformal FDTD technique to directly simulate dielectric
boundaries, since it maintains the lattice duality. Therefore, no
instabilities, even late-time ones, are observed. On the other hand,
the accuracy obtained, even with very coarse meshes, is very
good as is proved by the numerical analysis of various resonance
problems.

Index Terms—Conformal finite-difference time-domain
(CFDTD), dielectric interfaces, resonators.

I. INTRODUCTION

S INCE the advent of the finite-difference time-domain
(FDTD) method, many efforts have been made in order

to produce an efficient and straightforward algorithm for the
geometric modeling of arbitrarily shaped surfaces [1]. The
quite popular staircase meshing, though it fulfills the simplicity
condition, is known to introduce significant errors, especially
in resonance problems, even if very dense meshes are incor-
porated [2], [3]. On the other hand, the appreciable number of
FDTD variations, promising to obtain sufficient simulation of
non-Cartesian structures, is fairly complex or characterized by
limited applicability.

Specifically, for purely cylindrical or spherical problems, the
FDTD method in global curvilinear coordinates (cylindrical or
spherical) [1] or special two-dimensional (2-D) reductions due
to rotational symmetry (body of revolution) [4], [5] are success-
fully utilized. However, both cases are limited by the fact that
the curvilinear grid must conform to all the boundaries and in-
terfaces of a problem, otherwise another mesh must be selected.

These restrictions are overcome by the generally nonorthog-
onal FDTD methods [6]–[9], which are no longer based on
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orthogonal grids but on arbitrarily structured ones that geo-
metrically model the problem’s boundaries. Their significant
efficiency is outbalanced by the great deal of computational
resources and programming complexity required, since, in ad-
dition to the original FDTD algorithm, lattice information must
also be stored.

The research for a more simple (than the nonorthogonal
FDTD), with wider applications (than the global curvilinear
FDTD) and more accurate (than staircase meshing) algo-
rithm led to the contour path finite-difference time-domain
(CPFDTD) technique [10], [11], the conformal finite-difference
time-domain (CFDTD) technique [12], and their numerous
variations [13]–[17]. They are all based on a reformulation of
the original FDTD method in terms of surface and contour
integrals.

The objective of this paper is to present a new consideration
of the contour path and conformal FDTD approaches by means
of the grid structure. A systematic procedure, which maintains
the reciprocity and causality of Maxwell’s equations (absent in
the original CPFDTD algorithm) and is directly applicable to di-
electric boundaries in three dimensions, is built. The grid cells
are distorted from their Cartesian form only near the dielectric
interface according to the FDTD conformal techniques, while
right afterwards appropriate edge movements are performed. In
the lattice created, new types of cells, apart from the classical or-
thogonal and conformal ones, appear (five-faced primary prisms
and seven- and nine-faced dual prisms). Therefore, a topologi-
cally correct scheme is generated where the two grids, accom-
modating the electric and magnetic field components, maintain
their duality. The field variables are updated by means of the in-
tegral form of Maxwell’s equations, which are now feasibly im-
plemented. The proposed procedure is thoroughly analyzed in
Section III, after a brief description of the CPFDTD and CFDTD
approaches in Section II. Finally, the efficiency of the innova-
tive algorithm is demonstrated through the solution of various
demanding resonance problems.

II. MODELING OF CURVED SURFACES WITH THE

FDTD METHOD

A. CPFDTD Technique

The method is a generalization of the original FDTD algo-
rithm. It is based on the local deformation of the lattice cells
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in the vicinity of the curved surface in order to geometrically
conform to it, whereas in the rest of the computational domain
the grid preserves its initial orthogonality [10], [11]. Therefore,
the necessary boundary or interface conditions on the sur-
face—for example, the continuity of the tangential electric field
along a dielectric interface—can be easily implemented. Due
to this locally nonorthogonal grid structure, the update equa-
tions are not derived from the differential form of Maxwell’s
equations (standard FDTD) but from the integral one, which
are discretized so as to maintain the leapfrog character in
space and time.

Consequently, considering a 2-D grid with , , and
components as variables, the Faraday contours, used for the up-
date of the components, are deformed near the conducting
or dielectric surface, enforcing an edge to align with it. On the
other hand, the magnetic field components remain at the center
of the initial cells and, hence, Ampere’s contours, used for the
update of the electric field, remain orthogonal. It must be noted
that calculations of Ampere’s contours crossing the interface
are either not performed (conducting objects) or performed by
means of interpolation procedures or the nearest neighbor ap-
proximation (conducting/dielectric objects) [10].

In any case, these are sources of inaccuracy and inherent in-
stability (independent of the time step selection), since they are
responsible for the noncausality and the nonreciprocity of the
algorithm [16], [18]. Thus, although simple and efficient, the
CPFDTD method frequently leads to instabilities.

Efforts have been made toward a stable procedure; however,
these improvements are valid only for the simulation of con-
ducting materials and not for dielectric objects [13], [15], [19].

B. CFDTD Technique

This method, a representative version of which has been pre-
sented for the modeling of perfectly conducting objects [12],
varies from the CPFDTD algorithm in the treatment of the mag-
netic field. In an effort to overcome the instability problems that
reside in the CPFDTD, magnetic field components, located at
the center of distorted cells but inside the perfectly conducting
material are also computed. This is obtained by taking into ac-
count the nonzero components of the electric field in the cell
surrounding the corresponding magnetic field component and
the edge lengths outside the conductor. Therefore, each electric
field component can be calculated by means of Ampere’s law
and not by any other auxiliary way. However, the method has
some stability limitations, which are outbalanced by using the
CPFDTD complementarily to the CFDTD [12]. Nevertheless, it
is considered to be more efficient as compared to the CPFDTD
when modeling conducting materials [16].

C. Modeling Dielectric Objects in Three Dimensions: The
“Stair-Step” Problem

The two aforementioned techniques are proved to be ineffi-
cient for the direct simulation of dielectric interfaces in three
dimensions [16], mainly because the tangential to the boundary
electric field component of the distorted cells is no longer zero.

Fig. 1. The “stair-step” appears because P is the node of cell C , but not of
the neighboring one, C .

Consequently, the so-called “stair-step” problem appears and
renders the locally nonorthogonal structure topologically un-
stable.

To probe further, let us assume a dielectric interface that is
arbitrary in shape, according to a function with and

corresponding to the two dimensions of the structure’s cross
section, while no alteration occurs in the third one . Fig. 1
illustrates its discretization by an orthogonal finite difference
grid, which would actually be the lattice used by the CPFDTD
and the CFDTD.

Inspecting a wider part of the computational space (not only
the restricted area of two cells), one can easily observe the “stair-
step” problem, which arises in the primary grid when the pair
of distorted cells moves a row up or down according to the
curve’s slope. As shown in Fig. 1 ( cross section), the “stair-
step” is created by a cell node that does not coincide
with a corresponding node of a neighboring cell , but is
located along their common edge . This topological irregu-
larity causes difficulty in implementing Ampere’s law for the
time update of the electric field component along the common
edge and is responsible for the use of the “nearest neighbor”
approximation (CPFDTD).

The topological deficiencies become more problematic, not
only for the CPFDTD, but for the CFDTD as well, when the
dual grid is inserted. The local nonorthogonal structure of the
primary grid and the existence of the “stair steps” result in an
unorthodox complex dual grid, which is defined to have its cell
vertices located at the barycenters of the primary cells. The basic
topological rule that “each dual (primary) grid edge must inter-
sect only one primary (dual) grid face” is violated and therefore
algorithmic instability is caused.

Obviously, the two locally conformal FDTD based tech-
niques cannot be extended to the three-dimensional (3-D)
modeling of dielectric interfaces unless important alterations
in the lattice’s structure are performed. It must be mentioned
herein that efforts for generalization of the CFDTD method
have been recently published [20]–[22]. However, they are
based on the introduction of effective permittivities for the
edges and cells that intersect the interface (maintaining the
Cartesian grid structure in the overall computational domain)
and therefore deviate from the original conformal idea.
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III. ANALYSIS OF THE SYSTEMATIC PROCEDURE

A. Construction of the Locally Conformal Mesh

According to the previous section, the creation of a topologi-
cally stable 3-D conformal FDTD algorithm requires the appro-
priate elimination of the “stair steps.” The proposed technique,
based on the main idea of the CPFDTD and CFDTD techniques
and introducing appropriate grid modifications, overcomes any
duality deficiency and constitutes a stable and robust algorithm.
A systematic and straightforward way of forming the cells near
the dielectric interface can be summarized into the following
four-step procedure (pre-processing part of the algorithm).

1) The computational domain is discretized by means of an
orthogonal standard FDTD grid.

2) The primary grid cells close to the interface are deformed
in order to conform to it and better describe it. The
“stair steps,” created by cell edges not coinciding with
a corresponding edge of a neighboring cell, are detected
[Fig. 2(a)].

a) It is noted that, for curves with less than a 45
slope, the “stair steps” are detected horizontally
[i.e., moving along the interface, the cell pair
that is responsible for the “stair-step” creation, is
detected—the vertical arrow in Fig. 2(a)] and for
curves with greater than a 45 slope, the “stair
steps” are detected vertically.

b) In case of curves with a generally varying slope
between 0 and 90 , like quarters of circles or
ellipses, a combination of the above is used. Simul-
taneously, the cells containing points with a 45
slope are also detected (transition cell–transition
point). Particularly, assuming the upper left quarter
of a circle, the search is performed vertically until
the transition point of 45 from which further
horizontal search is performed as mentioned in
Fig. 2(a).

3) In this step, the improved grid is developed by eliminating
the “stair steps,” and the cells intersected by the interface
around the transition point are also reformed.

a) As far as the “stair steps” concern, the two primary
faces that are responsible for their formation are
moved toward different directions (opposite to the
curve) and the corresponding cells are turned from
hexahedrals into five-faced prisms (quadrilaterals
into triangles in cross-section view). Therefore, the
“stair-step” problem is overcome. This case is il-
lustrated in Fig. 2(b).

b) For the treatment of the cells around the transition
point (45 slope), two cases are distinguished, one
in which the transition cell is mostly filled with
the material of the cylinder [Fig. 2(c)] and one in
which the transition cell is mostly filled with air
[Fig. 2(d)], according to the portion of the cell—in
which this point is located—that is filled by each
dielectric. The diagonal of the cell that intersects al-
most normally the curve (its two points are located

(a) (b)

(c) (d)

(e)

Fig. 2. (a) Cell deformation according to the original CPFDTD and CFDTD
methods. The “stair step” (circles) and transition cell detection proceeds as
the arrows show. (b) Edge movement and elimination of the “stair steps.”
(c) Treatment of the transition cells (case 1). (d) Treatment of the transition cells
(case 2). (e) Complete modeling according to the systematic procedure (solid
lines: primary grid; dashed lines: dual grid; circles: shiftedH components).

in either side of the curve) is detected. The node of
the diagonal, which is closer to the curve, is moved
on the diagonal–curve intersection point [1) and 3)
of Fig. 2(c) and 1) of Fig. 2(d)]. Furthermore, the
edges of the cell that are not connected to the node
are completely removed and replaced by the short-
ened aforementioned diagonal [2) of Fig. 2(c) and
(d)]. The two cases are illustrated in Fig. 2(c) and
(d).

The completion of the third step has a consequence: the
appearance of five-faced cells at the primary grid, apart
from the nonorthogonal hexahedral ones.

4) The dual grid defined by the barycenters of the primary
cells’ volumes is inserted.



842 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 51, NO. 3, MARCH 2003

The above four-step procedure can be feasibly implemented
for the exact geometric representation of any dielectric interface,
needing as a requirement only the knowledge of its variation
in space.

B. Update Equations

The update of field components in the grid is performed by
means of the integral form of Maxwell’s equations, i.e., the
circulation of the electric (magnetic) field along the circumfer-
ence of a primary (dual) grid face is used for the update of the
magnetic (electric) field normal to that face. As an example, the
algebraic difference equations for the component located
at the barycenter of triangle and of the component
along the interface [Fig. 2(e)], will be derived from Faraday’s
and Ampere’s law, respectively. Therefore, we start from the
two integral forms

(1)

(2)

where and are the electric and magnetic field intensities
and and the electric and magnetic flux densities. Assuming
that the flux density normal to a surface and the field intensity
along the edge intersecting the surface are related by means of
coefficients , , , as ,
then the algebraic equations derived are the following:

(3)

and

(4)

In (3) and (4), is the time step, is the edge length along
the -direction, and are the perimittivity and permeability
appointed to the updated component, is the triangle area,
is the length of dual edge , and . The two
important issues of the projection coefficients and the selection
of the permittivity of the electric field components along the
interface will be defined below.

It must be noted that, if (3) and (4) refer to a standard orthog-
onal cell, they coincide with the corresponding ones derived by
the differential form of Maxwell’s equations.

C. Projection Coefficients

The general absence of orthogonality between the primary
grid faces/edges and the dual grid edges/faces, due to the local
unstructured nature of distorted cells, imposes the use of a

Fig. 3. Field fluxes and intensities are related to each other through a simple
geometrical projection.

Fig. 4. Computation of the effective perimittivities along the dielectric
interface.

projection scheme for the connection of the fluxes computed
by Maxwell’s equations to the intensities required for this
computation [23]. The former are normal to the faces whereas
the latter are aligned with the edges. Supposing that an edge
intersects its dual face by an angle (Fig. 3), then the
following expressions relate a flux (connected to the face)
to the corresponding intensity (located along the edge) and
define the projection coefficients:

electric field:
magnetic field: .

It has to be mentioned that there exist other, more popular pro-
jection schemes [6], [24], performing an interpolation of more
than one neighboring field intensity components when com-
puting the normal to a face flux density. However, it has been
proved that, in general, they lead to late-time instabilities [7],
[8]. Although some improvements have been proposed, for sim-
plicity reasons we preferred—and since no inaccuracies are in-
troduced—the above projection scheme.

D. Effective Permittivities at the Dielectric Interface

When dielectric interfaces are simulated, the permittivity
values appointed to the electric field components located along
the interface play a very significant role. Considering the inter-
face of Fig. 4, it is only the dielectric constants related to
and along the interface that must be appropriately defined.
In the proposed method, a scheme based on the discretization
of the integral form of Maxwell’s equations over finite volumes
containing the interface, and taking into account the continuity
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conditions across it, is implemented. Therefore, the following
effective permittivities are derived:

where and are the areas of the cell belonging to the ma-
terial with permittivities and , respectively. These values,
which are the outcome of linear weighting in the volume of a
cell, are proved to maintain the second order accuracy of the
FDTD equations [25].

E. Stability Analysis

As has already been mentioned, the numerical stability of the
proposed scheme must be examined from two points of view:
the topological one and the time discretization one.

To probe further, we assume that the update equations can be
written in a matrix form by means of the following coupled set
of first-order difference equations:

(5)

(6)

where are vectors of the discrete flux density components,
the superscripts refer to discrete time, and represent
the discrete contour integrals of the electric and magnetic
fields around primary and secondary cell faces, respectively,

is a diagonal matrix having as elements the inverse of
the relative permittivity, and and are the projection
matrices. According to the analysis of [7], the system eigenvalue
equation and the system matrix can be derived, leading to the
following two conditions that need to be satisfied in order to
assure stability:

1) The system matrix must be positive definite with real and
distinct eigenvalues (topology).

2) The time step (time discretization) must be less than
.

In the proposed scheme, matrices and are diagonal
(each flux component is connected only to one intensity com-
ponent as mentioned in Section III-C) and, therefore, symmetric
and positive definite. Moreover, matrix is also diagonal even
for inhomogeneous domains. Therefore, and since the product

is always positive definite, the former condition is satis-
fied and the algorithm does not suffer from late-time instabili-
ties, which are the outcome of a nonsymmetric or nonpositive
definite system matrix. On the other hand, the second condition
is equivalent to the one derived in [26] as a function of the metric
coefficients of a general curvilinear space. However, the max-
imum value of the time step that does not lead to instability may
also be defined by the empirical, though fairly practical, relation
(similar to the one of the PGY algorithm [24])

Fig. 5. Four distinct regions of the primary grid as they are formed for the
simulation of an arbitrary curve. The dual grid is correspondingly created.

Fig. 6. Partially filled resonator.

where is the speed of light in the material with minimum
permittivity and and are the length of edges sharing a
common vertice.

Therefore, the avoidance of any approximation schemes
(such as “nearest-neighbor”), together with the implementation
in the procedure of simple projection coefficients and effec-
tive relative permittivities, assures algorithmic accuracy and
stability.

F. Discussion

Apparently, the proposed technique preserves, in a major
level, the characteristics of the original FDTD method, since
the deformed cells exist only in a three-cell width area across
the simulated surface (interface). Therefore, the additional
memory requirements of the algorithm, since they are related
only to the edge lengths and areas of the distorted cells as well
as to the projection coefficients for each edge-face pair, are
insignificant. Furthermore, the overall computational time is
slightly larger than the one required by the standard FDTD
method, with staircase meshing or special effective coefficient
schemes, with the same grid size. These extra demands corre-
spond to the preprocessing part of the procedure, where all the
geometric information is calculated and stored. On the other
hand, the iteration part requires no more computational time
than that of the standard FDTD algorithm. Nevertheless, the
accuracy obtained by the innovative technique is much higher,
as will be revealed by the numerical results.

Moreover, the mesh generation performed in the prepro-
cessing part may be realized in a feasible and systematic way.
This can be attained via several procedures. We indicate below
the idea on which we were based, a characterization of various
types of cell areas around the curved interface that require
special treatment. Specifically, four types of cell areas in the
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TABLE I
RESONANT FREQUENCIES (�10 ) FOR " = 38 (A � PROPOSED METHOD, B � STAIRCASE FDTD METHOD, C �METHOD [22])

TABLE II
RESONANT FREQUENCIES (�10 ) FOR Q = 2 (A � PROPOSED METHOD, B � STAIRCASE FDTD METHOD, C �METHOD [22])

primary grid can be distinguished according to the slope angle
of the dielectric interface:

• region “A”: column containing one (1) five-faced pris-
matic cell (prism of triangular cross-section) above the
dielectric interface;

• region “B”: column containing one (1) five-faced pris-
matic cell below the dielectric interface;

• region “AB”: column containing two (2) five-faced
prismatic cells, one above and one below the dielectric
interface;

• region “O”: column containing no five-faced prismatic
cells.

It must be mentioned that a single “stair step” is replaced via
the above procedure by a pair of regions “A” and “B.” How-
ever, when the curve is very steep, subsequent “stair
steps” appear in the grid, which are substituted by one region
“A,” regions “AB,” and one region “B.” Regions “O” de-
scribe the classical, distorted, hexahedral cells in the absence of
“stair steps.” Fig. 5 depicts in the cross-sectional view the dis-
cretization of the interface between two dielectrics by the pro-
posed method. This distinction, while requiring minor computer
resources, greatly simplifies the algorithm.

Finally, in the case of interfaces with a generally varying
slope, the transition cells are easily detected and reformed ac-
cording to the procedure given in Section III-A.

IV. NUMERICAL RESULTS

The proposed methodology is validated through the analysis
of various resonant structures, constituting challenging numer-
ical problems since late-time instabilities are often reported due
to the absence of dissipation for spuriously generated energy.

Additionally, the greater sensitivity of the results to any lattice
inaccuracies, as compared to scattering problems, renders the
selected ones even more appropriate for the validation of our
scheme. The resonant frequencies are computed for each case
and compared either with analytical/experimental values or with
results obtained by the utilization of other methods.

It is also mentioned that all frequency-domain results are ex-
tracted from the implementation of the Fourier transform on the
time samples filtered by a Blackman–Harris window.

A. Partially Filled Orthogonal Cavities

The resonant cavity (Fig. 6) has the dimensions
0.2 0.1 0.111 m is excited by a Gaussian in space
and time distribution and is characterized by a dielectric
interface that varies according to the function [27]

where and are the width and the height of the structure and
a curvature parameter.
The results derived by the innovative lattice structure are

compared with those of the staircase FDTD technique and of a
variation of the CFDTD technique [22].

Specifically, the efficiency of the proposed algorithm is tested
for a series of different interface curvatures obtained by varying
parameter , while the filling material remains the same

. The results are shown in Table I where the fourth resonant
frequency of the cavity for three values of is
computed. The promising performance of the new scheme is
obvious, since even for very coarse meshes it is significantly
accurate. Furthermore, no instabilities are observed as the grid
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TABLE III
COMPARISON OF THE COMPUTATIONAL RESOURCES CALCULATION OF THE FOURTH RESONANT FREQUENCY FOR Q = 3 AND " = 38

Fig. 7. Parallel-plate dielectric resonator withR = 5:25mm,H = 4:62mm,
and relative dielectric constant " = 38.

becomes denser despite the large number of time steps that were
used so as to examine the limits of the algorithm.

The proposed technique was also tested for various values
of the filling material permittivity, since a higher dielectric
discontinuity is more difficult to be accurately modeled. Nev-
ertheless, as shown in Table II, the new scheme preserves
its accuracy thanks to the precise geometric representation of
the interface and the use of the effective permittivity scheme
along the interface.

Consequently, the overall computational resources needed for
a specific level of accuracy is significantly reduced as proved
by the comparative study of Table III, where the CPU time and
memory requirements of the three methods and the fourth reso-
nant frequency computed by them for various grids, are listed.
This important advantage of the proposed methodology is based
on its ability to obtain significant precision while simultane-
ously maintaining in a major level the simple and easy-to-pro-
gram structure of the standard FDTD algorithm.

It is worth mentioning that the resonant frequencies com-
puted by the proposed technique approaches the exact value
from above. This property, observed in most of the cases
treated, is appointed to the utilization of the projection coeffi-
cients, which affect the dispersion relation.

B. Parallel-Plate Cylindrical Dielectric Resonator

The resonant frequencies of the parallel-plate dielectric res-
onator of Fig. 7 are computed by means of the proposed algo-
rithm. For this simulation, and were set equal to 0.25 R,

TABLE IV
HIGHER ORDER RESONANT FREQUENCIES (IN GIGAHERTZ) OF THE

PARALLEL-PLATE DIELECTRIC RESONATOR

Fig. 8. Electric field intensity variations versus time.

the number of time steps was 32 768, whereas the computational
domain along the - and -directions was truncated by a six-
layer perfectly matched layer (PML). In contrast to the previous
problem, the curvature range of the interface is greater and re-
quires, for proper modeling, the utilization of transition cells as
well. Nevertheless, and despite the coarse mesh used, the accu-
racy obtained is very good (the relative error is quite small even
for the higher order modes) as revealed by the comparison of the
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TABLE V
HIGHER ORDER RESONANT FREQUENCIES (IN GIGAHERTZ) OF

THE CYLINDRICAL DIELECTRIC RESONATOR

results with analytical values and those of a dense 2-D FDTD
(body of revolution) method [4], presented in Table IV. More-
over, the stability of the algorithm is demonstrated in Fig. 8,
where time samples of the electric field inside the resonator are
shown (in this case the number of time steps was 131 072).

C. Cylindrical Dielectric Resonator

The cylindrical dielectric resonator (without parallel plates)
constitutes an open problem requiring additional mesh trunca-
tion (PML) along the -direction. This did not cause a stability
problem since, similarly to the proposed algorithm, the PML
is also planar. The dimensions and the permittivity as well as
the characteristics of the grid used are equal to those of the
previous problem. Again, a very close agreement between the
resonant frequencies computed, the experimental values, and
the ones of a dense 2-D FDTD (body of revolution) method
[5] (see Table V) is observed and proves the validity of the
algorithm.

V. CONCLUSION

A systematic and feasible procedure for the direct conformal
simulation of nonorthogonal dielectric structures in three di-
mensions was introduced. It is based on a successful combina-
tion of prism and hexahedral cells which restore the duality of
the two grids that is violated by the traditional CPFDTD and
CFDTD techniques when implemented in dielectric interfaces.
Therefore, a topologically stable numerical tool was produced
that proved to be fairly efficient in the analysis of partially filled
and dielectric resonators.
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